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ABSTRACT

A solution to the problem of automatic location of objects in digital

pictures by computer is presented. A self-scaling local edge detector which

can be applied in parallel on a picture is described. Clustering algorithms

and boundary following algorithms which are sequential in nature process the

edge data to locate images of objects.
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I. INTRODU CTION

A substantial amount of research was done in developing techniques for

locating objects of interest automatically in digitized pictures. Drawing the

boundaries around objects is essential for pattern recognition, tracing of

objects in sequence of pictures for control systems, image enhancement, data

reduction, and various other applications. References 1, 2, and 3 comprise

a good survey of the research and application of image processing and picture

analysis.

Most researchers of picture analysis assumed that (1) the image of an

object is more or less uniform or smooth in its local properties (that is,

illumination, color, and local texture are smoothly changing inside the image

of an object) and (2) there is detectable discontinuity in local properties between

images of two different objects. We will adopt these two assumptions in this

paper and assume no textural image (see Ref. 4 for an example of texture

image analysis which does not make these assumptions).

The work on automatic location of objects in digitized images was split

into two branches: (1) the edge detection and edge following vs (2) the region

growing. The edge detection meant applying in different points over the picture

local independent operators to detect edges and then using algorithms to trace

the boundaries by following the local edge detected. A recent survey of litera-

ture in this area is given in Ref. 5. The region growing approach was to use

various clustering algorithms to grow regions of almost uniform local proper-

ties in the image. (See Refs. 6-9 for typical applications.) More detailed

-eferences will be given later.

In this paper the two approaches are combined to complement each other.

The end result is a more powerful mechanism to do the job of picture segmenta-

tion. We developed a new edge detector and combined it with new region

growing techniques to locate objects and thereby resolved the confusion that

has resulted for regular edge following when more than one isolated object on a

uniform background is in the scene (see Ref. 10).

The contributions of this report are the following:

(1) A new and "optimal" (given certain assumption) edge detector is

presented.
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(2) A simple one-pass algorithm to do region growing is presented

which utilizes the edge detector output.

(3) The application of path generator algorithms and "shortest path

algorithms" to do the boundary following so as to close open

edge lines into boundaries around regions is discussed.

(4) Special-purpose region growing intended to close open edges

(cracks) is described.

(5) A special clustering algorithm which simplifies the region

structure resulting from application of (1) through (5) is presented.

II. DEFINITION OF TERMS

The input is expected to be in matrix form V(i,j) i = 1,.. .,N j = 1,...,

M, where V is a vector in Rn , n is a function of the sensory system, usually

1 (gray level picture), or 3 (color or x, y, z coordinates of surface in the scan-

ning direction), or 6 (color and 3-D information). An edge unit separates two

adjacent matrix points; that is, an edge unit is between (i,j) and (i + 1, j) or

between (i,j) and (i,j + 1) for some i,j, (see Fig. 1).

An edge unit is usually adjacent on both ends to other edge units. There

are 64 combinations of edge units continuing an edge unit since each of the
1 1 1.

edge units el, e 2 , e 3 , el , e 2 , e 3 in Fig. 1 may exist or not.

Two points on the grid (I, J) and (K, L) are said to be in the same region

if there is a path sequence (il,j),. . . , (in, in) such that i i = I =J J' in = K

and jn = L, where (i m , jm) is adjacent to (im+1 ,' m+l) for m = 1,. . .n - 1 and

there is no edge unit between the two. A region will be a maximum set of

points satisfying that property.

An edge-line (or an edge) between region R 1 and region R 2 is the maxi-

mal sequence of adjacent edge units such that each edge unit in the sequence

is between two matrix points, one belonging to R 1 and the other to R 2 . It is

possible that an edge line is inside a region (R1 = R 2 ).

An edge line which is between two different regions is called a boundary.

An edge line which is inside a region is called a crack. An open crack is

a crack in which at least one end terminates without connecting to any edge

line. A closed crack is one which terminates at both ends on another edge
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line. For instance, cracks will appear when an object is smoothly disappear-

ing into the background on one side and has detectable discontinuity on the

other side (Fig. 2).

Using the above definitions, this report presents an edge detector which

detects edge units in parallel locally on the whole image. Then a region

grower which results in the grouping of matrix points into regions and edge

units into boundaries and cracks is presented. A local region grower which

tries to break a region with a crack in it into two regions for which the crack

is part of the common boundary is then presented. Alternatively, an open-

crack-extending algorithm is suggested to connect the open edge unit of the

crack to another edge line.

III. THE LOCAL EDGE DETECTOR

The edge operator is a detector of local discontinuity in an image. When

applied between two adjacent points such as (i,j) and (i + l,j), it should

return a value which will measure the confidence that there is an edge between

(i,j) and (i + l,j). Since we work with noisy input to achieve reliability, the

operator must look at two 2-dimensional (2-D) neighborhoods N 1 and N2 to

obtain a reliable value. Neighborhood N1 will include (i,j) and a few adjacent

points; N2 includes (i + l,j) and a few adjacent points; and N 1 n N2 = 0. As a

result the value returns will measure the confidence that the neighborhoods

belong to images of different objects.

Edge detection is actually composed of three components: (1) choosing

the proper neighborhoods, (2) the measurements of differences between image

structures in the two neighborhoods, and (3) locking on the exact position of

the edge. Discussion of each of these steps follows.

IV. MEASURING DIFFERENCES IN STRUCTURE BETWEEN
TWO NEIGHBORHOODS

Any techniques which measure structural differences must make some

assumption (explicitly or implicitly) on the structure of an edge vs the area

inside the image of a region. Binford and Hershkovitz (referred to in Ref. 5)

suggested three possible ideal edges defined by the reading profile on a

normal-to-the-edge line (Fig. 3).
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All of these idealized edges are in reality washed with white noise on

both sides, where the noise is the result of both hardware noise and surface

irregularities. Basically, the decision needed to be made is between two

hypotheses:

H0: The readings in N1 and N2 are taken from the same object.

HI: The readings in N 1 are taken from one object and in N 2 from

another object.

Neighborhoods N 1 and N2 are the neighborhoods mentioned in the previous

section, and the decision as to how to choose them will be described in the

next section.

An optimal (best for its size) decision between H 0 and H1 will utilize

the maximum likelihood ratio as follows: Let P0 be the maximum likelihood

estimate of the structure (reading in N 1 and N 2 ), given that HO is true, and

let P1 be the maximum likelihood estimate of the structure, assuming H1 is

true. Then,

P
Choose H I when - > K

P

Choose H 0 when p < K

With probability Y, choose H0 and with probability 1 - 7, choose

P
1H I when - K 0 < 7 < 1
0

This decision will be optimal for its size (see the Neyman-Pearson lemma

in Ref. 11, page 201); hence, if the structure assumptions are valid, we have

an ideal edge detection, given only readings in N 1 and N2 . (We will deal with

gaussian probabilities; hence we will ignore PO/Pl = K.) The conclusion is that

Pl/P0 is the best measure of the edge strength. Following are two examples

of applying these principles to edges of types (a) and (b) in Fig. 3.
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EXAMPLE 1

Assume that the edges and surfaces will be of type A, with added white

noise which is object-dependent. Then H0 and H 1 will become

H0: The readings in both N 1 and N 2 are taken from the same normal

distribution N( 0 , "0) with unknown 0,' "0'

H1: The readings on N 1 are taken from normal distribution N(L 1 , "1) ;

and the readings on N 2 are taken from normal distribution

N(2', G2 ) ; (~1' o 1 ) need not be equal to (p2' a2 ).

To apply the maximum likelihood ratio principle we need to find a

maximum likelihood estimate for ( 0o (T ) ( 1' I ) and ([2' (2 ) . Given (Xl, " ,Xn

readings taken from a normal distribution with unknown ([, c), the

maximum likelihood estimates are

n
ixi

i=l
n

n
(xi - )2

2 i= 1O- -
n

P =P (x 1 (" x)
max (P , ) ( ' 'n)

n

2r . (x 2
- *e i=l
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2
no-

1

( r e r)n

S1n e( n

Hence, if the readings on N 1 are (xl, ,Xm) and on N 2 (yl' ,y), then,

on N1'

M1m

(Xi
i=1

(x1 m

m

p 2 e 2 1

(2rr) 1

On N2 ,

n

i=l1

L2 - nn

Z (yi - 12

2 i=1
(V2 - n
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and on N 1 combined with N2,

m I + n42
0 =  m+n

2 ml 2 +n.-2 2 +m ( 0 YL 2 + n ( 0 f 2 )2

0 m+n

- m+n

P 1 1
0 m+n m+n

(2r) 2 0

2 2 2)m+n
P *P

2

PO2 (1 2)m ' (2n

(It is convenient to work with -2 since it saves computation of square roots.)

An "almost always" good threshold in this example was K2 = 25. That

is, if P2/P02 > 25, decide that there is an edge; otherwise there is no edge.

Note that the threshold is self-scaling. In noisy or highly textured areas it

will in effect require a higher step for an edge, and in smooth areas it will

require a lower step. In practice, we also always forced our -2 to be greater

than 0.25 since all our readings were digitized, which meant a +0.5 random

error in the readings.

At this point it may be worthwhile to compare our approach with that of

Ref. 12. Both try to use a maximum likelihood ratio to compute scores for an

edge. But while we have a simple model and a practical way of computing the

confidence, Ref. 12 assumes a priori deterministic classification of all possible

idealized noise-free structures to edges and no edges. Then, for a given read-

ing structure, the noise assumption is used to compute the probability of all
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idealized structures that could have caused the readings. These probabilities

are used to decide whether the readings represent on edge or not.

EXAMPLE 2

Here we assume that each matrix point V(i,j) is a 3-dimensional vector

(x,y, z). Actually the raw readings are just distance R(i,j), but to avoid a

strong dependency on the sensory position, (i,j,R) are used to compute (x,y, z).

This is the form of input read from a device which measures distances to

surfaces (such as radar or devices which measure the time of flight of laser

beams to an object). The i,j corresponds to vertical and horizontal steps in

the scanning angle. The two adjacent neighborhoods on the matrix N and
1 1 1

N2 have readings (xlY I , z1 )," " , (x Yn, z ) in N1 and (x y 1 ,z ),

(Xm 'm , zm ) in N . We assume that objects are almost planar locally with

added white noise. That is, if we read (xlyl, zl), ' " , (XnYn, Zn) in a small

neighborhood on an object we have a, b, c, d, u- such that

2 2 2
a +b +c = 1

and

ax. + by. + cz. + d + N(0, -) = 0 i = 1," ,N
1 1 1

With this assumption the edge detection decision will be a choice between

H 0 and H 1'

H 0 : The readings in the two neighborhoods are taken from the same

plane. That is the readings on both N 1 and N 2 satisfy for some

(a 0 , bo, c O , d o' '0 )

a0x + boy + CoZ + d o + N (0, T0) = 0

where

2 2 2
a0 +b + c =1

for all (x,y, z) readings in N1 and N 2 .

H 1: There are two not necessarily equal planar fits for the readings

on N 1 and on N 2. That is, there are (al, bl, c I , dl' a-1) for N 1
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and (a 2 , b 2 , c 2 , d 2 ,' Z) for N 2 such that

2 2 2

al + + c1  = 1

a2 + b 2 + c 2 = 1

i= i," , n alxi + blYi + c 1 z i + dl + N(O, 1) = 0

i=l, m a 2 xi 1 + bYil + c2zi + d 2 + N(O, 2 ) = 0

To apply the Neyman-Pearson principle for this case we want to

find maximum likelihood estimates. Maximum likelihood estimates al, bl,

ci, dl will be

n mmin n

V1 Z ( a l x i + b l i + ClZi + d l ) a,b,c,d (ax + by + cz. + d)

i=1 a +b +c =1 i=1

and

2
1 = V1

Solving for the optimal (al, b 1 , c 1 , dl) is a relatively straightforward

process. Once they are found, the maximum likelihood estimate for N 1 will be

n

P .e
1 n n

. l-1

Hence, we have the expression which tests for an edge. It is of the following

form: If

m+n
0 > K2.

K
V 1n . V 2m
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decide for H 1 , otherwise H .

Note that (x,y, z) may be replaced by (i,j, g) in regular black and white pictures,

in which case we will have a regular picture edge operation which will be able

to handle edges of type B in Fig. 3.

V. NEIGHBORHOOD SELECTION

In the previous discussion on decision criteria we deliberately left out

the question of how to choose the test neighborhoods. This is another variant

of the properties that we want the edges to have. The edge value for a vertical

edge between two horizontally adjacent points is taken to be the strongest case

for an edge computed on the four pairs of neighborhoods (a) through (d) in Fig. 4.

Taking the maximum of the maximum likelihood ratio estimate for an edge

among the four values computed for the four neighborhoods is similar to the

approach advocated in Ref. 13.

A completely symmetric configuration is used to measure the confidence

value of a horizontal edge unit between two vertically adjacent points. The

choice of neighbors is of an experimental nature, and it worked for our problems.

Other problem-dependent neighborhood choices are possible, and they will

work for the specific edge structure in mind (see examples in Fig. 5). In

choosing the size of a neighborhood, a reasonable balance between noise and

size of object should be achieved. The bigger the neighborhoods the less

sensitive to noise the decision will be, but the small objects may be lost.

At this point it is worthwhile referring to the edge detector developed

by Hueckel (Ref. 14). He found an elegant technique to compute parameters

for step function:

d ai + bj >_cSTEP a,b c d, e(i,j) d i
abcde e ai + bj < c

For a disk

(i,j) E DISK(i0,0 ,g ) A (i,j) (i - i 0 ) + ( - j < /
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which minimizes for a given signal g(i,j) in the disk the quantity

(i,j) - STEPa, b, c, d, e

(i, j) E DISK

over all possible step functions. He took the parameters of a,b,c, d,e to be

the parameters of the "best possible" edge passing through the disk. This

measure of edge quality is clearly different from ours. Since our measure of

edge strength is more complicated, it is unlikely that an elegant and simple

way of finding optimal edge through a disk using our measure of edge strength

is achievable. However, given a suggested edge structure, our approach can

be used immediately to provide a model-driven confidence evaluation in the

existence of the suggested edge. For the suggested (a,b,c,d,e) edge parameter

let

N 1
ai + bj > c
(i,j) e DISK

"2 = d

2 (g (i, j)- d)2/N2

ai + bj _ c
(i,j) E DISK

N1 = - 1

ai + bj < c
(i,j) E DISK

i =L e

2 C (g (i,j)- e)Z/N 1

ai + bj < c
(i,j) E DISK
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N O = N1 + N2

[0 = (N 2 " -'2 + N 1 . 1 )/N 1 + N 2 )

0
2  E (g (i,j) - 2/N0

(i,j) E DISK

Then,

N

STRENGTH = (-02)
N  N2

VI. LOCKING ON A DETECTED EDGE

Computing the edge value is not usually sufficient to decide where to put

the edges. The values that are computed usually look like the ones in Fig. 6.

One way of forcing the edge to be well defined is to constrain it to be a

local maximum in addition to having a confidence value higher than a certain

threshold. This is, of course, extremely important for locking on the center

of the edge. Usually there is still some local ambiguity on the location of the

edge, and for many practical reasons it is better to treat the area around an

edge as ambiguous. The source of problems here is that, because of computing

time constraints, it was impossible to find a global optimum for edge lines

using all available data, and it was necessary to use only local information

for evaluating edge units in this level. In our system, the decision as to where

exactly to put the edge was left for the region grower (see below). To demon-

strate the possible 2-D ambiguity, see Fig. 7.

The search for a maximum may be used for special-purpose edge detec-

tion. For instance, if we look only for one dark stripe crossing a white back-

ground, forcing the edge to be the absolute maximum or minimum on a hori-

zontal line in the image (keeping track of signs of change) will supply the

appropriate pair of edges.
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VII. REGION GROWING

The output of an application of an edge detector results in two new

matrices in addition to the matrix V(i,j) of raw data. The first is EV(i,j),

which is the measure of the confidence that there is an edge unit between (i,j)

and (i, j + 1); the second is EH(i,j), which measures the confidence that there

is an edge unit between (i,j) and (i + 1,j). EV(i,j):and EH(i,j) may include

extra bits as determined by the direction of the change on that suggested edge

unit.

This output as it stands is not sufficient for application of pattern recog-

nition and various picture quantitative analysis tasks, since outlines of objects

are needed in order to recognize features. Hence a region grower which will

outline objects is needed. A straightforward approach is to classify as edge

units all edge units where EV(i,j) or EH(i,j) are of confidence value greater

than some threshold T and which are local maxima. A point (i 0 ,j 0 ) is a local

maximum if EV(i 0 ,j 0 ) EV(i 0 ,j 0 + 1) and EV(i 0 ,j 0 ) _EV(i 0 ,j 0 - 1) or EH(il,j 0 )

EH(i 0 - l,j 0 ) and EH(i 0 ,j 0 ) > EH(i 0 + 1,jO). Unfortunately, this straightforward

approach fails. Indeed, it creates an excellent display of boundaries for the

viewer, but as a result of image irregularities too many cracks are generated

and too many skinny regions appear on boundaries of objects. Because of that,

a sequence of algorithms is called to utilize more global structure to find

exact positions of boundary lines and eliminate most cracks and regions which

are too small to be of interest.

We start by describing a one-pass algorithm which parses the edge data

into data structures of regions, boundaries, closed cracks, and open cracks

and creates, as byproducts, two arrays, FH(i, j) and FV(i, j), where FH(i, j)

means that the program puts an edge unit between (i - l,j) and (i,j), and

FV(i,j) means an edge unit between (i,j) and (i,j - '1).

To ease the description of the decision mechanism for putting edges, we

need to define a few new terms. Let T > 0 be the edge confidence threshold;

then,

(1) 'd' is the distance between two adjacent grid points. It will be

d((i,j), (i - 1,j)) 4 d((i - 1,j), (i,j)) 4 if EH(i,j) < T

then 0, else EH(i,j)

d((i,j), (i,j - 1)) 4 d((i,j - 1), (i,j)) 4 if EV(i, j) < T

JPL Technical Memorandum 33-709 13



then 0, else EV(i,j)

(2) Reg(i,j) will be the region to which the point (i,j) belong.

(Reg(i,j) is not defined to all points until the program is finished.)

(3) Val(i,j) = Min {d((i,j), (k,l))}

Ii-k + j-1 = 1
No edge unit between

(i,j) and (k, 1)

This value will be + o if (i,j) is the only point in its region.

(4) Val(Regl) = Min(Val (i,j))

(i,j)
Reg(i,j) = Reg 1

(5) A point P will be the minimum point for its region if

Val(P) = Val(Reg(P))

The algorithm is designed so that at each state there is always a non-

decreasing path from each minimum of any region to any other point in the

region and the path enters that point from its minimum direction.

That is, if P and Q are two points such that

Reg(P) = Reg(Q) and Val(P) = Val(Reg(P)), then

there is a path (x 1 , x 2 , . , Xn) such that

(a) x 1 = P, Xn = Q

(b) Reg(xi) = Reg(P), i = 1, ,n

(c) x. adjacent to x.i+ d(x.i+ x. i) >d(xi+,' xi)

(d) d(xn, Xn- I ) = Val(xn)

We say if such a path exists that Q is reachable from P.

That is, two points are in the same region if you can get from one to the

other in a path which does not cross a ridge of edge values.

VIII. ALGORITHM DESCRIPTION

The program scans the image from left to right, line by line. That is,

the scanning is such that when point (i,j) is processed, the program already

worked on all points (il,jl) such that (j 1<j) or (j = j 1 and ii <i).
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Assume the program is processing point (i,j).

Let D 1 be a Boolean variable set to true if this program is not going to

put an edge unit between (i,j) and (i,j-1), and false otherwise, and let D2 be a

Boolean variable set to true if the program is not going to put an edge unit

between (i,j) and (i - 1,j), and false otherwise. Let R 1 = Reg(i,j-l) and

R 2 = Reg(i-l,j (see Fig. 8).

The decision on the values of D 1 and D2 is described by the following

ALGOL-like program:

Begin

Boolean Good-Down 1 , Bad-Down 1 , Up 1 , Good-Down 2 , Bad-Down Z , Up 2 ;

Good-Down 1 - if d((i,j), (i,j-1) < Val(i,j-1) A Val(i,j-1) 5 Val(R)

then TRUE

else FALSE;

Comment: Good-Down I is true if point (i,j) is going to become a new

minimum for R 1 (the region above). And it is adjacent to an old minimum;

hence, any point of R i reachable from the old adjacent minimum will be

reachable from the new;

Bad-Down 1 - if d((i,j), (i,j-1)) < Val(i,j-1) A (Val(i,j-1) > Val(R1 ))

then TRUE

else FALSE;

Comment: This variable is true if (i,j) is not reachable from all minima

of R i going through (i,j-1);

Upl - if d((i,j), (i,j-1)) > Val(i,j-1)

then TRUE

else FALSE;

Comment: This variable is true if point (i,j) is reachable from any

minima of R i by continuing the path that leads from that minimum to

(i, j- 1);

Good-Down 2 - if d((i,j), (i-1,j)) < Val(i-1,j) A (Val(i-1,j) _ Val(R 2 ))

then TRUE

else FALSE;

Comment: This variable is true if point (i,j) is going to be a new minimum

for R 2 (the region minimum, to the side) and is adjacent to an old
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minimum of R 2 ; hence any point reachable from the adjacent old mini-

mum will be reachable from (i,j);

Bad-Down 2 - if d((i,j), (i-l,j)) < Val(i-l,j) A Val(i-l,j) > Val(R 2 )
then TRUE

else FALSE;

Comment: This variable is true if (i, j) is not reachable from all minima

of R 2 through (i-l,j);

Up 2  - if d(i,j), (i-l,j) _ Val(i-l,j)

then TRUE

else FALSE;

Comment: This variable is true if point (i,j) is reachable from any minima

of R 2 by continuing the path that leads from that minimum to (i-l,j);

If Good-Down 1 A Good-Down 2 then D1 -- D2 - true

else

If Good-Down I A Bad-Down 2 then begin D 1 - true; D2 - false; end

else if Good-Down 1 A Up 2 then begin

if d((i, j), (i, j -1)) _d(i(i, j), (i-1, j))
then D 1 - D2 .- true

else begin D 1 - true; D 2 .- false; end;

end

else if Bad-Down1 then begin if Good-Down2 V Up2 then begin

DI false

D2 - true

end

else begin

D I- false

D2 .- false; end

end

else if Upl A Good-Down 2 then begin

if d((i, j), (i-1, j)) - d((i, j), (i, j-1))

then D 1 - D2 .- true

else begin D 2 .- true; D 1 - false; end

end

else if Upl A Up 2 then, if R 1 = R 2 then D1 - D2 .- true else

if d((i,j), (iTechnical Memorj))andd((i,j), (i,j-33-70))
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then begin D 1 - true; D2 - false; end

else begin D 1 - false; D 2 - true; end

end

Comment: Only one of D1 and D2 can be true; otherwise we cannot

guarantee entrance through minimum value from all minima of both R 1

and R2 ;

else if Upl A Bad-Down 2 then begin D 1 - true; D2 - false; end

Val(i,j) - co;

if D 1 then begin

Val(i,j-1) *- Min(d((i,j), (i,j-1)), Val(i,j-1));

Val(i,j) 4- d((i,j), (i,j-l));

Val(RI) .- Min(Val(R 1 ), Val(i,j));

end;

if D then begin
2

Val(i-1,j) - Min(d((i,j), (i-l,j)), Val(i-l,j));

Val(ij) e- Min(Val(i,j), d((i,j), (i-l,j)));

Val(R 2 ) e- Min(Val(R 2 )), Val(i,j));

end;

If not (D 1 V D2) then Val(Reg(i,j)) - o;

The el and e 2 (see Fig. 8) may exist or not, and as a result there are

four starting conditions. The program may put D 1, D2 , DI and D2 or none

of them, and hence, there are 16 cases in a point. (See Fig. 9 for a brief

description of the different cases.)

Merging of two regions may always result in transformation into a crack

of a previously common boundary of the two regions. In general, each operation

of the region grower is fairly elaborate: more than meets the eye. The data

structure used is not described in this paper, but it is essentially the same

data structure described in Ref. 9, with slight modification to include edge

line representation through chain encoding.

This one-pass algorithm is local and requires relatively small core

resident data. However, it does not create maximal regions with respect to

our criteria of path connectivity and reachability. The reason is the possible

asymmetry of the distance function. On the other hand, it is relatively simple

and fast when other algorithms are considered. The maximality problem may
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be easily corrected if backup is allowed. Note also that, in fact, the threshold

T plays a very small role in defining the output of the algorithm.

IX. SIMPLIFICATION OF THE RESULT OF BASIC REGION GROWING

There are two straightforward options for simplifying the output of the

one-pass region grower: (1) take all regions that are too small to be interesting

and melt them into their closest neighbor (the distance between two regions

will be defined later in the paper); (2) take all short cracks which are weak

(strength of the edge line will be defined later) and delete them. Of course, the

threshold below which a crack is weak and a region is small is a function of

how much we want to elaborate the task of the image analysis and is defined

heuristically. In fact, in the current implementation all cracks are deleted

since the edge operator was sensitive enough for our purposes.

X. GROWING OPEN CRACKS INTO CLOSED CRACKS

One possible way of closing open cracks is to grow them in length from

their open end until the extended edge line meets already existing edge lines

and closes. On the open end in each step there are three choices as to where

to extend the edge line: go straight ahead, turn left, or turn right. The

decision as to which direction to take will be to minimize the cost of closing

the open crack, where the cost is defined heuristically. One possible choice

is as follows:

Given the original crack, define two distributions which will describe

the properties on either side of the crack, PDI and PD2" The cost for adding

an edge unit will be the maximum likelihood ratio between the two assumptions.

H : the two sides of the edge unit belong to the same side of the crack

(the best choice between D1 on both sides of the extension and

D2 on both sides).

H1 : there is a different distribution on either side chosen according to

geometrical constraint (Fig. 10).

Cost = PH /PH
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Note that since the cost function is additive it can be used in conjunction

with the shortest path algorithm (Ref. 15, Ch. 3) to find the nearest (least

expensive) path to a closing edge unit. Reference 16 describes another heuristic

of line expanding which may be applicable to our case.

XI. BREAKING A REGION INTO TWO AROUND A CRACK

An alternative approach to breaking a region into two regions so as to make

the crack into a part of a boundary is to use special-purpose region growing.

Assume that there is a crack in a regular gray level picture (that V(i,j) E R1),
2

with readings with mean 1i and variance e on a small neighborhood on one
2

side of the crack and mean t2 and variance u2 on the other side. Assume

that the crack is inside region R; then we can break the points in R into two

classes, C 1 and C2 :

(i j() 2 1 (V(i, j) 2

C2  R- C1

Then in some sense we would expect C 1 to be on the first side of the

crack and C2 on the second side of the crack. Unfortunately, it may turn out

that C 1 or C2 are not path-wise connected. As a result, one of the connected

components which border on the crack should be picked out. A more heuristic

approach is to grow a region around each of the two sides of the crack, and

to stop when a new point has a neighborhood which is more likely to belong to

the other side. Then take the smaller of the two regions resulting and make

it C 1 ; then C2 will be

C 2 = R- C 1
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This algorithm can be used also to allow flexible human interaction in

analyzing the scene.

XII. MERGING REGIONS

The basic region grower utilized local detection procedures. Better

decisions are achievable (at least theoretically) by using more global informa-

tion. The problem is how to allow this additional information and still keep the

program lean and fast. Research in that area was reported (Ref. 16). Basically,

our approach is to be oversensitive on the local pass and as a result to over-

segment the picture. But then we take the data output (which is reduced data)

and simplify it. We take pairs of regions with common boundaries and merge

them into one. In order to do that reliably, a confidence value which measures

the confidence that the pair of regions are different is computed, and iteratively

we pick the pair of regions with the lowest confidence of being different in the

current structure, merge them, and update the structure. The confidence is

computed as the product of two components: (1) edge line strength (on the

common boundary of the two regions) and (Z) the difference of the properties

inside the region. Both of these values are computed on the basis of assumptions

similar to those used in the edge confidence evaluation. For instance, if we

assume gray level readings, at each point (i,j) the value is a positive integer

value. Along the edge line take two small neighborhoods on the two sides

(like a 4-point-wide stripe on each side of the edge) and assume that the readings

in one neighborhood are

(x ) i1

and

m
1 i= 1

in the other. Then the edge strength will be the ratio between the maximum

likelihood estimate that (x i )  (x i=l are from two different normal distribu-
n )m

tions to the maximum likelihood estimate that (x.) (x. i are taken from the1 j I i=
same normal distribution. The computation technique for the values is the

same as that used in the edge evaluation model 1. This value gives the boundary
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strength evaluation; a similar value is computed on the basis of distribution in

each region, which gives the difference in properties of the two regions.
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READING / POINTS READINGS

(a) (b) I
DISTANCE, NORMAL TO EDGE DISTANCE, NORMAL TO EDGE

READINGS

(c) EDGE AREA

DISTANCE, NORMAL TO EDGE

(a) IDEALIZED STEP EDGE (DOMINANT EDGE TYPE IN VISUAL IMAGES).
(b) PURE GRADIENT EDGE (CORNERS ARE ESPECIALLY FREQUENT IN ANALYSIS

OF 3-D IMAGES WHEN DIRECT MEASURE OF DISTANCE IS AVAILABLE)
(c) SPIKE EDGE (APPEARS FREQUENTLY IN CORNER EDGES IN VISUAL iMAGES).

Fig. 3. Typical edges

(a) EDGE TYPE (b) EDGE TYPE A/'/ // (c) EDGE TYPE
(REGULAR EDGE) (LINE) (T CORNER)
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Fig. 4. Typical neighborhoods for edge detection

JPL Technical Memorandum 33-709



2

N

N 2 N IIN

GENERAL EDGE ORIENTATION CORNER DETECTOR; T CORNER DETECTOR
DETECTOR IN DISK COM- a' AND a TAKEN
PUTED FOR FINDING OPTIMAL TO BE TYPICAL
ORIENTATIONS, DEPENDING ANGULAR RESOLUTIONS
ON THE DESIRED ANGULAR
RESOLUTION

Fig. 5. Extended neighborhoods set

EDGE THRESHOLD "

READINGSREADINGS
EDGE VALUEt,

... READINGS

DISTANCE NORMAL TO EDGE

Fig. 6. An ideal edge value cross section

JPL Technical Memorandum 33-709 25



* (3, 1)
(I, 1) (2, 1)

1.0 1.0
1.0 1000 2000

(1, 2) (2, 2) 1000 (3, 2)0 2000 0 1

1.0 2000 1.0

(1, 3) 2000 (2, 3) (3 3)
S1 1.0

THE (i, j)ARE POINT NUMBERS AND THE VALUES ARE EDGE UNIT
VALUES. CLEARLY POINTS (1, 1) (1, 2) (1, 3) (2, 1) (3, 1) SHOULD
BE IN ONE REGION AND (3, 2) (3, 3) (2, 3) IN ANOTHER, BUT
WHERE (2, 2) SHOULD BE IS TOTALLY AMBIGUOUS (ASSUMING
THAT SINGLE POINT REGIONS ARE NOT ALLOWED).

Fig. 7. Region growing ambiguity example

el1  R
II
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e2  DI
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D2 1

Fig. 8. Algorithm terms definition
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